BIOLOGY SELF-STUDY MATERIALS Senior Four

Topic: Growth and Development

Introduction

By the end of this topic, you should be able to conduct an experiment on plant growth over time. You should also be able to plot a growth-time graph on the growth observed.

You can easily determine the growth in plants by using a germinating seedling. The rate at which a seedling grows shows the availability of nutrients in the soil and the overall health of the plant.

Activity: Determining the growth rate of a seedling

In the activity below, you will germinate seeds and take measurements on the shoot of the seedlings to determine the rate of growth.

Things you will need: Maize grains, empty plastic water bottle, water, knife or razor blade, ruler, pen / pencil, graph paper

Procedure

- 1. Half way the length of the water bottle, make a mark with pencil / pen.
- 2. Cut the bottle using a knife or razor blade from the marked part.
- 3. Remove the top part of the bottle.
- 4. Put soil in the remaining part of the bottle.
- 5. Put maize grains in the soil but on the side nearer the wall of the bottle where you can see.
- 6. Sprinkle water onto the soil. Why is this so? Keep checking on the seeds.
- 7. Note down when the shoot appears. Record this as day 0 in the table.

Time (days)	Length of shoot (cm)
Day shoot appears (day 0)	0
Day 2	
Day 4	
Day 6	
Day 8	
Day 10	

- 8. Then after two days, measure the height of the shoot in millimeters. Continue with measurement and record the result after every two days for the next 5 days.
- 9. From the records obtained, plot a graph of growth rate against time (number of days).

Follow-up activity

During germination and growth of maize, the dry weight of the endosperm, the weight of the embryo and the total dry weight were determined at two-day intervals. The results are shown in the table below.

Time after planting (days)	Dry weight of endosperm (mg)	Weight of embryo (mg)	Total dry weight (mg)
0	43	2	45
2	40	2	42
4	33	7	40
6	20	16	37
8	10	25	35
10	6	33	39

- 1. On the same axes, draw a graph of the dry weight of the endosperm, weight of the embryo and the total dry weight against time.
- 2. Determine the total dry weight on day 5
- 3. Explain:
 - i) the decrease in dry weight of the endosperm from days 0 to 10.
 - ii) the increase in dry weight of embryo from days 0 to 10.
 - iii) the decrease in total dry weight from day 0 to 8.
 - iv) the increase in total dry weight after 8 days.